Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2024.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2024.03.11.584367

ABSTRACT

SARS-CoV-2 still presents a global threat to human health due to the continued emergence of new strains and waning immunity amongst vaccinated populations. Therefore, it is still relevant to investigate potential therapeutics, such as therapeutic interfering particles (TIPs). Mathematical and computational modelling are valuable tools to study viral infection dynamics for predictive analysis. Here, we expand on the previous work by Grebennikov et al. (2021) on SARS-CoV-2 intra-cellular replication dynamics to include defective interfering particles (DIPs) as potential therapeutic agents. We formulate a deterministic model that describes the replication of wild-type (WT) SARS-CoV-2 virus in the presence of DIPs. Sensitivity analysis of parameters to several model outputs is employed to inform us on those parameters to be carefully calibrated from experimental data. We then study the effects of co-infection on WT replication and how DIP dose perturbs the release of WT viral particles. Furthermore, we provide a stochastic formulation of the model that is compared to the deterministic one. These models could be further developed into population-level models or used to guide the development and dose of TIPs.


Subject(s)
Coinfection , Virus Diseases
2.
preprints.org; 2022.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202207.0426.v1

ABSTRACT

A calibrated mathematical model of antiviral immune response to SARS-CoV-2 infection is developed. The model considers the innate and antigen-specific responses to SARS-CoV-2 infection. Recently published data sets from human challenge studies with SARS-CoV-2 were used for parameter estimation. Understanding the regulation of multiple intertwined reaction components of the immune system is necessary for linking the clinical phenotypes of COVID-19 with the kinetics of immune responses. Consideration of multiple immune reaction components in a single calibrated mathematical model allowed us to address some fundamental issues related to pathogenesis of COVID-19, i.e. sensitivity of the peak viral load to parameters characterizing the specific response components, the kinetic coordination of the individual responses, and the factors favoring a prolonged viral persistence. The model provides a tool for predicting the infectivity of patients, i.e. the amount of virus which is transmitted via droplets from the person infected with SARS-CoV-2, depending on the time of infection. The thresholds in the relative unbalance between innate and adaptive response parameters which lead to a prolonged persistence of SARS-CoV-2 due to the loss of a kinetic response synchrony/coordination were identified.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL